Welcome to the Climate-Safe Infrastructure Webinar Series

Supporting AB2800 and the Work of California's Climate-Safe Infrastructure Working Group

June 11, 2018 | 12-1pm

Hosts

Juliette Finzi Hart | USGS

Co-Facilitator of CSIWG's work

Email: jfinzihart@usgs.gov

Susi Moser | Susanne Moser Research & Consulting

Co-Facilitator of CSIWG's work

Email: promundi@susannemoser.com

AB 2800 (Quirk): Purpose

Examine how to integrate scientific data concerning projected climate change impacts into state infrastructure engineering, including oversight, investment, design, and construction.

AB2800 Working Group and Support Team

Co-Facilitators

Juliette Finzi Hart USGS

Susi Moser Susanne Moser Research & Consulting

The Climate-Safe Infrastructure Working Group

Amir Aghakouchak **UC-Irvine**

Deb Niemeier

UC-Davis

Bruce Swanger Cal-Trans

James Deane

High-Speed Rail Auth.

Chester Widom DGS, State Architect

John Andrew

Cis Liban L.A. Metro

Kristin Heinemeier

Realized Energy

Dan Cayan UC-San Diego, SIO

Kyle Meng

UC-Santa Barbara

David Groves RAND

Martha Brook

Nancy Ander DGS, Off. of Sustain.

Noah Diffenbaugh Stanford

Natural Resources

Robert Lempert

Project Team

Keali'i Bright **Natural Resources** Agency

Joey Wall

Agency

Guido Franco California Energy Commission

Elea Becker Lowe

Natural Resources

Agency

AB 2800 (Quirk): Scope of Assessment and Recommendations

The working group shall consider and investigate, at a minimum, the following issues:

- (1) **informational and institutional barriers** to integrating climate change into infrastructure design.
- (2) critical information needs of engineers.
- (3) **selection of appropriate engineering designs** for different climate scenarios.

The *Climate-Safe Infrastructure* Webinar Series

Purpose

- Hear from others elsewhere with relevant experience and expertise.
- Hear from CSIWG members.
- Educate and engage with interested stakeholders on climate change and infrastructure issues.

Sample of Webinar Topics

- What climate science can offer
- Various sectoral perspectives
- Processes of changing engineering standards and guidelines
- Holistic infrastructure planning and management
- Financing climate-safe infrastructure
- And others...

A Couple of Housekeeping Items

- Please type your questions for presenters into the <u>chat box</u>
- We will try to answer as many as possible after the presentations
- Answers to remaining questions will be posted on the website
- Thank you to USC Sea Grant!

Monitoring Infrastructure Performance

Jennifer Jurado, Ph.D.
Chief Resilience Officer
Division Director
Broward County

Peter Murdoch, Ph.D.Regional Science Advisor
USGS

Andreas Georgoulias, Ph.D.
Research Director
Zofnass Program for Sustainable
Infrastructure

Banking on Resilience: Advancements and Lessons from Southeast Florida

California Climate-Safe Infrastructure Webinar June 11, 2018

Dr. Jennifer L. Jurado, CRO and Director Environmental Planning and Community Resilience Division

The Region of Southeast Florida

Characterized by:

- ☐ Dense coastal development
- ☐ Flat, low-lying terrain
- ☐ Active flood management
- ☐ Complex system of canals and structures

Noted vulnerabilities:

- Nearly 6 million residents
- ■Substantially altered land use
- ☐ Rising seas
- More intense storms and rainfall

Compounding current flood conditions and future flood risk

Abundant Flood Risk and Infrastructure

Needs

2018 Monroe County – Hurricane Irma

2016 Fort Lauderdale - Tidal Flooding

Regional SLR Projection

UNIFIED

SEA LEVEL RISE

Yet, in 2016 infrastructure tax failed

What Are The Broward Half-Cent Sales Taxes? For Some Voters, An Issue of Public Trust

By KATE STEIN . OCT 19, 2016

Reject Broward sales tax, plan is a boondoggle | Editorial

Broward County Voters Approve One Sales Tax Measure but Reject Another; Neither Passes

Community Issues

- SLR and Flooding
- Boil water notices
- Aging water infrastructure

Yet, 30-yr proposal provides

- 27% for parks
- 17% for government buildings
- □ 10% for vehicles
- Only 9% for water infrastructure

Had it not been for the political compromise that enabled it to be placed on the ballot, voters would have narrowly passed a county transportation sales tax measure. In neighboring Palm Beach County, a straight-forward sales tax measure passed.

(and cities continue to divert funds from utilities)

Restructuring Conversation and Relationship

2016

- Regional economics workshop
 - **Finance**
 - Insurance
 - Risk management
- Sea level rise forum

<u>2017</u>

- Business resilience committees
- Economic resilience in regional action plan
- Summit theme "Business of Resilience"
- Statement of collaboration

Resilience as a Process

Process and Strategy

□Land Use

Priority Planning Areas Adaptation Action Areas Comp Plan/Land Use

- ☐ Site specific planning and design
- Regional systems and infrastructure

- Timeline
 - Drainage infrastructure (2017)
 - Coastal flood barriers (2018)
 - Flood elevations (2019)
 - Infrastructure plan (2020)

Future Condition Average Wet Season Groundwater Table Map

- 2060-2069 average groundwater conditions
- ☐ USACE high = 2 feet SLR
- CCSM model = 9% increase in rainfall
- Stakeholder engagement
- Effective July 1, 2017

USACE-Broward Resiliency Study

- Resilient Sea Wall Top Elevations
- Calibrated hydrodynamic model
 2 feet sea level rise
 High tides
 25-yr storm surge
- Damage loss reduction
 Commercial activity

Update to Broward 100-Year Flood Map

- One of 3 tools used to set finished floor elevations
- Historically worst case condition
- Does not account for sea level rise
- □ Amended map will:
 Integrate sea level rise
 Capture changes in groundwater
 Provide flood elevation with rainfall
 Address CRS creditable criteria
 Reduce flood risk/higher standards
 NOT be used to set FEMA FIRMS

Reinforcing the Need for a Range of Investments

Raise Sea Walls

Regional Water Storage

Elevating Roads and Critical Infrastructure

Active Management

Economic Basis for Action

- Protect infrastructure
- Reduce flood risk and losses
- Protect credit ratings
- Improve insurance affordability
- Protect property values/tax base

South Florida's Real Estate **Reckoning Could Be Closer** Than You Think

Environmental risks

Evaluating the impact of climate change on

Moody's **INVESTORS SERVICE**

Moody's Warns Cities to Address Climate Risks or Face Downgrades

By Christopher Flavelle November 29, 2017 4:00 AM From Climate Changed

BUSINESS INSIDER

Cities and states could see their credit ratings crash if they don't start preparing for climate change

Collaborating on Economic Resilience

PalmBeachPost

Organized Action

- 2018 Resilience Roundtable
- Elected and business leadership
- Action Items:
 - ✓ Perform regional risk assessment
 - ✓ Identify priority capital improvements
 - ✓ Develop a coordinated, resilient infrastructure investment plan
 - ✓ Include economics
 - ✓ Communicate

Broward Leaders Resilience Roundtable 5/24/2018

Summary

- Flooding is the most pressing resiliency challenge for SE Florida, and probably for much of our state
- ☐ Risk reduction requires a tiered approach addressing future conditions, standards, site specific improvements, and systems
- Near-term economic consequences provide expanded basis for strategic and coordinated action
- Regionally-scaled investment will require a formal plan, with measures and ROI
- Consistency, transparency, and communications remain key

Questions?

Dr. Jennifer L. Jurado
Chief Resilience Officer, Director
Environmental Planning and Community Resilience Division
Broward County

jjurado@broward.org

954-519-1464

Intermission: Reasons to think about tracking adaptation success

1. Communication and public engagement

- Communicating hope and desirable goal to work towards
- Defining a common vision among diverse stakeholders

2. Deliberate planning and decision-making

- Setting clear goals, aligning means and ends (internal consistency)
- Best fit with other policy goals (external consistency)
- 3. Justification of adaptation expenditures
- 4. Accountability/good governance
- 5. Support for learning and adaptive management

California Climate-Safe Infrastructure Working Group
Sacramento, CA
June 11, 2018

The DOI Hurricane Sandy Program

- Hurricane Sandy made landfall in the Northeastern US on Oct. 29, 2012, wreaking havoc on communities in 12 states and the District of Columbia
- Through disaster relief funding, DOI funded over 160 projects (about \$340 million) for projects aimed at understanding and improving **resilience**

DOI Sandy Response Resilience Projects

Projects designed to provide ecosystem and community resilience to flooding, storm surge, SLR and increased storm events

- Marsh Restoration
- Beach Restoration
- Aquatic Connectivity
- Science Support Tools

http://www.fws.gov/hurricane/sandy/

Charge from the 2013 Federal Disaster Recovery Coordination Workplan:

"Quantifying benefits of resilience projects and calculating resilience project return on investment in order to better inform future public spending"

Collapsed sea wall in Marshfield

The DOI Challenge

By 2022, DOI needs to assess the success of 165 projects in enhancing resilience. *This requires:*

- Rapid detection of resilience change (Sandy supplemental funding allowed 3 years of study- we extended metrics to 2022)
- **Core measurements** that have **some existing record** and can allow for cross-project comparison and trend detection
- Baseline conditions and vulnerability (tipping points)
 for detecting change (often poorly documented)
- Linkage between social and ecosystem resilience for whole-system management, but each measured with existing, robust methods

The DOI Strategy

- ✓ Catalog outcomes expected from across the 165 projects
- ✓ Select core metrics of socio-economic and environmental change (convened experts)
- ✓ Study factors determining vulnerability (condition and tipping points) in projects
- Expand data sources by agreements on core metrics across agencies
- ✓ Make data and interpretations easily accessible to stakeholders and investigators
- Measure baseline and post-project conditions using tested, existing measurements
- Adopt an analysis framework for linking environmental and socio-economic change across time and space (trends and maps)
- Analyze resilience change by coastal feature, ecosystem service, and/or coastal sub-regions
- Translate into best management planning and practices

Source: Stevens Institute of Technology, P. Orton and others HDR, Inc., J. Fitzpatrick

Strategy for measuring change

DOI Metrics Expert Group

Sorting change metrics by coastal feature:

- Beaches, Dunes, and Breaches
- Wetlands, marshes, and ponds
- Nearshore waters and estuaries
- Built environments (Green, Grey, and Hybrid Infrastructure)
- Rivers and streams (dam removal)
- Upland watersheds and coastal forests

Abiotic: position, shape, slope, elevation, sediment transport, contaminants

Biotic: Vegetation (e.g., % invasive, species diversity, % cover)
Birds and Fish population demographics (e.g., recruitment, abundance, condition, species diversity),

Natural Infrastructure Metrics (NIMs) Goals:

Develop core metrics that cut across agency
missions, supporting efficiencies and knowledge
base that demonstrate that natural infrastructure is:

- Effective
- Resilient
- Cost Effective
- Focus on Ecosystem Services
- Report due soon

Is Metrics by Ecosystem Services

SMANTES			
II. REGULATING SERVICES			
3	Reduce Flooding	 Peak and wave height and period 	
		o Inundation extent, frequency, duration	-
4	Manage Erosion and Sedimentation	o Turbidity (TSS)	
		 Sediment movement 	350
		o Change in shoreline position	400
		o Change in shoreline profile/elevation	
		o Vegetation density	Bea
5	Reduce Velocity and Energy of	 Wave magnitude (height, velocity) 	200
	Waves/Currents	o Wave run-up	100
6	Provide and Store Groundwater	o Water table levels	GSW
		o Salinity of groundwater	20
		 Contaminant concentrations 	2000
		o Soil infiltration rate	
7	Improve Water Quality	o Turbidity (TSS)	
		o Biological	
		 Pollutant concentrations (pathogens) 	Par
		 Contaminant concentrations 	
8	Provide Carbon and GHG Storage	o Organic matter/ labile pool	
		o Decomposition rate	
		 Sediment oxidation 	
9	Reduce Wildfire Potential	o Historical burn rate	
		o Occurrence, intensity, size and space of fire	
10	Provide Functional Surface Water	o Surface runoff	70.00
	Hydrology		Con
			Pho

Baseline Data to Resilience Response: e.g. LiDAR for Forecasting Erosion and SLR

Improve Models

Update and improve accuracy of pre-landfall erosion forecasts (projects)

Vulnerability

Social, economic & infrastructure elements added to forecasts (projects)

Assess & Disseminate

Support best practice and share data through Coastal Change Hazards Portal

Requirement: Pre-storm, PROCESSED, LiDAR data

An Earth System Framework

The "planetary boundaries" doughnut concept (Rockstrom et al, 2009) and it's environmental justice corollary "social foundations" (Raworth, 2012) provides a framework for rigorous measurement of environmental and social factors affecting resilience

Cost-effective measurements integrated to track whole systems

Final Thoughts

"If resilience is built through a project, and no resilience metric is around to measure it, does it have an impact?"

Anonymous, National Adaptation Forum, St. Louis, MO 2015

Measurement is a fraction of the cost of restoration or mitigation, and saves money over time by defining best practices for a changing world

Thank you!

- Questions: pmurdoch@usgs.gov
- DOI Sandy Program: https://www.doi.gov/hurricanesandy
- NFWF Sandy Program: <u>http://www.nfwf.org/hurricanesandy/Pages/home.as</u>
 <u>px</u>

Commercial Incentives for Sustainable Infrastructure:

The case of the Governor George Deukmejian Courthouse in Long Beach, California

Dr. Andreas GeorgouliasZofnass Program for Sustainable Infrastructure

Introduction

Scope of Study

- I. Investigate the feasibility of P3 in delivering long-term sustainability with respect to public sector buildings.
- II. Identify the opportunities and challenges of the P3 method in project definition, design, construction, and operations.
- **III.** Document the benefits of the P3 method for the project sponsor (client).
- IV. Develop a set of conclusions that can be perused by public and private entities.
- V. Exemplify innovative solutions in delivering public infrastructure projects in the US.

The project

The project

The project

Findings

Commercial construct incentivizes innovation throughout the process Leverage on expertise of private sector throughout. 2 Shift towards a long view of the project (life cycle vs upfront costs) 3 Sustainability is built in from the start to produce a competitive design 4 5 Operator participates from the start to guide design decisions Requirement to return the building at a certain FCI ensures performance 6 **Enables fast-track construction (completed 2 years faster)** Implementation of best-practices to avoid performance-based penalties 8 Collaboration and communication are critical 9

7. Fast-track construction (completed 2 years faster)

6. End-of-life FCI requirement

5. Operator participates in design

3. Long view of the project

4. Sustainability built-in from the start

1. Commercial construct

2. Private sector expertise

1. Commercial construct

periods unavailable	2	(2 hr period)	
floors affected	4	floors	
	# of Units /	Unit	Total
Functional Unit	floor	Deduction	Deduction
Courtrooms	2	\$384	\$6,144
Holding Cells	7	\$96	\$5,376
Interview Rooms	2	\$96	\$1,536
Attorney/Client Room	4	\$96	\$3,072
Elevator Unavailability Penalty			\$5,000
Total			\$ 21,128

Conclusions

- 1. PPP process facilitated sustainability outcomes not possible with other methods.
- 2. Commercial construct is key and the main driver of improved outcomes.
- 3. Provides best value and long term benefits for government or project sponsors in general.
- 4. Considerable challenges but manageable with a good team.
- 5. Collaboration and communication is critical, within the project team and with the client.

THANK YOU

Dr. Andreas Georgoulias ageorgou@post.harvard.edu

Monitoring Infrastructure Performance

Jennifer Jurado
Chief Resilience Officer
Division Director
Broward County

Peter Murdoch
Regional Science Advisor
USGS

Andreas Georgoulias
Research Director
Zofnass Program for Sustainable
Infrastructure

Thank you!

- The *Climate-Safe Infrastructure* Webinar Series continues at least through July 2018
- Upcoming webinars:
 - Financing the Future, Part 3 late June 28
 - Talking Climate Change with Engineers July 10 or 12
 - Track webinars and progress of CSIWG at: http://resources.ca.gov/climate/climate-safe-infrastructure-working-group/
- Questions: Joey Wall <u>Joseph.Wall@resources.ca.gov</u>

Extra slides

What is success?

- 1. Combination of physical (functional) resilience change and a change in societal capacity (fewer negative health or economic effects from disturbance).
- 2. Required standardized performance metrics for project comparisons to define best practice
- 3. Goal: incorporate these performance metrics into decisions (permitting, policy, management)

The Benefit: Integrated research and monitoring of core metrics creates best practices and reduces long-term mitigation and restoration costs

Incorporate Trend Models: New LIDAR-Based Predictions of Sea Level Rise Vulnerability (Lentz et al, 2016)

Ecological Monitoring: DOI Core Metrics

Beach and Dune Restoration

- Fish, wildlife population, recruitment, overwintering, stopover weight
- Vegetation cover of dunes, pre and post
- Dune characterization
- Beach width, elevation, volume, shoreline position
- Post-storm volume of sand in active shoreface*

Living Shorelines

- Oyster length/frequency
- Oyster coverage & population
- Vegetation cover
- Water temperature, salinity
- Vertical accretion rates
- Shoreline position

